Abstract

<abstract><p>In this paper, we consider the numerical approximations of the Cahn-Hilliard phase field model for two-phase incompressible flows with variable density. First, a temporal semi-discrete numerical scheme is proposed by combining the fractional step method (for the momentum equation) and the convex-splitting method (for the free energy). Second, we prove that the scheme is unconditionally stable in energy. Then, the $ L^2 $ convergence rates for all variables are demonstrated through a series of rigorous error estimations. Finally, by applying the finite element method for spatial discretization, some numerical simulations were performed to demonstrate the convergence rates and energy dissipations.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.