Abstract

<abstract> <p>Multi-objective transportation problems (MOTPs) are mathematical optimization problems that involve simultaneously considering multiple, often conflicting objectives in transportation planning. Unlike traditional transportation problems, which typically focus on minimizing a single objective such as cost or distance, MOTPs aim to balance multiple objectives to find the optimal solution. These problems appear in various real-world applications such as logistics, supply chain management, and transportation, where decision-makers need to consider multiple criteria when designing transportation networks, routing vehicles, or scheduling deliveries. The primary challenge lies in the uncertainty in real-world transportation scenarios, where logistics involve factors beyond cost and distance. We investigated a multi-choice solid fractional multi-objective transportation problem (MCSF-MOTP) based on supply, demand, and conveyance capacity, where the coefficients of the objective functions were of the multi-choice type due to uncertainty. To address this uncertainty, the proposed model employed the Newton divided difference interpolation polynomial method, and the suitability of this model was validated through a numerical illustration employing a ranking approach.</p> </abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.