Abstract

We have demonstrated previously that the EGFR (epidermal growth factor receptor) is a calmodulin (CaM)-binding protein. To establish whether or not the related receptor ErbB2/Neu/HER2 also binds CaM, we used human breast adenocarcinoma SK-BR-3 cells, because these cells overexpress this receptor thus facilitating the detection of this interaction. In the present paper, we show that ErbB2 could be pulled-down using CaM-agarose beads in a Ca2+-dependent manner, as detected by Western blot analysis using an anti-ErbB2 antibody. ErbB2 was also isolated by Ca2+-dependent CaM-affinity chromatography. We also demonstrate using an overlay technique with biotinylated CaM that CaM binds directly to the immunoprecipitated ErbB2. The binding of biotinylated CaM to ErbB2 depends strictly on the presence of Ca2+, since it was prevented by the presence of EGTA. Moreover, the addition of an excess of free CaM prevents the binding of its biotinylated form, demonstrating that this was a specific process. We excluded any interference with the EGFR, as SK-BR-3 cells express considerably lower levels of this receptor, and no detectable EGFR signal was observed by Western blot analysis in the immunoprecipitated ErbB2 preparations used to perform the overlay assays with biotinylated CaM. We also demonstrate that treating living cells with W7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide], a cell-permeant CaM antagonist, down-regulates ErbB2 phosphorylation, and show that W7 does not interfere non-specifically with the activity of ErbB tyrosine kinases. We also show that W7 inhibits the phosphorylation (activation) of both ERK1/2 (extracellular-signal-regulated kinases 1 and 2) and Akt/PKB (protein kinase B), in accordance with the inhibition observed in ErbB2 phosphorylation. In contrast, W7 treatment increased the phosphorylation (activation) of CREB (cAMP-response-element-binding protein) and ATF1 (activating transcription factor-1), two Ca2+-sensitive transcription factors that operate downstream of these ErbB2 signalling pathways, most likely because of the absence of calcineurin activity. We conclude that ErbB2 is a new CaM-binding protein, and that CaM plays a role in the regulation of this receptor and its downstream signalling pathways in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call