Abstract

Zn(2+) exerts insulin-mimetic and antidiabetic effects in rodent models of insulin resistance, and activates extracellular-signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key components of the insulin signaling pathway. Zn(2+)-induced signaling has been shown to be associated with an increase in the tyrosine phosphorylation of insulin receptor (IR), as well as of insulin-like growth factor 1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) in several cell types. However, the specific contribution of these receptor protein tyrosine kinases (R-PTKs) in mediating Zn(2+)-induced responses in a cell-specific fashion remains to be established. Therefore, using a series of pharmacological inhibitors and genetically engineered cells, we have investigated the roles of various R-PTKs in Zn(2+)-induced ERK1/2 and PKB phosphorylation. Pretreatment of Chinese hamster ovary (CHO) cells overexpressing a human IR (CHO-HIR cells) with AG1024, an inhibitor for IR protein tyrosine kinase (PTK) and IGF-1R-PTK, blocked Zn(2+)-induced ERK1/2 and PKB phosphorylation, but AG1478, an inhibitor for EGFR, was without effect in CHO cells. On the other hand, both of these inhibitors were able to attenuate Zn(2+)-induced phosphorylation of ERK1/2 and PKB in A10 vascular smooth muscle cells. In addition, in CHO cells overexpressing tyrosine kinase deficient IR, Zn(2+) was still able to induce the phosphorylation of these two signaling molecules, whereas the insulin effect was significantly attenuated. Furthermore, both Zn(2+) and insulin-like growth factor 1 failed to stimulate ERK1/2 and PKB phosphorylation in IGF-1R knockout cells. Also, Zn(2+)-induced responses in CHO-HIR cells were not associated with an increase in the tyrosine phosphorylation of the IR beta-subunit and insulin receptor substrate 1 in CHO-HIR cells. Taken together, these data suggest that distinct R-PTKs mediate Zn(2+)-evoked ERK1/2 and PKB phosphorylation in a cell-specific manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call