Abstract

The main result of this note is an efficient presentation of the $S^1$-equivariant cohomology ring of Peterson varieties (in type $A$) as a quotient of a polynomial ring by an ideal $\mathcal{J}$, in the spirit of the well-known Borel presentation of the cohomology of the flag variety. Our result simplifies previous presentations given by Harada-Tymoczko and Bayegan-Harada. In particular, our result gives an affirmative answer to a conjecture of Bayegan and Harada that the defining ideal $\mathcal{J}$ is generated by quadratics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.