Abstract
The Axiom of Choice can be used to prove the Banach-Alaoglu theorem, while a weakened form of the Axiom of Choice is required to prove the full strength of the Hahn-Banach theorem, which is equivalent to the Banach-Alaoglu theorem. Although the Banach-Alaoglu theorem and the full- strength Axiom of Choice are not exactly equivalent, they are closely related.
 The Banach-Alaoglu theorem is a compactness theorem whose proof mainly depends on Tychonoff's theorem. In this article, Banach-Alaoglu theorem is equivalent to the axiom of choice, has been proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.