Abstract

In this paper we give a constructive proof of the pointfree version of Tychonoff's theorem within formal topology, using ideas from Coquand's proof in [7]. To deal with pointfree topology Coquand uses Johnstone's coverages. Because of the representation theorem in [3], from a mathematical viewpoint these structures are equivalent to formal topologies but there is an essential difference also. Namely, formal topologies have been developed within Martin Löf's constructive type theory (cf. [16]), which thus gives a direct way of formalizing them (cf. [4]).The most important aspect of our proof is that it is based on an inductive definition of the topological product of formal topologies. This fact allows us to transform Coquand's proof into a proof by structural induction on the last rule applied in a derivation of a cover. The inductive generation of a cover, together with a modification of the inductive property proposed by Coquand, makes it possible to formulate our proof of Tychonoff s theorem in constructive type theory. There is thus a clear difference to earlier localic proofs of Tychonoff's theorem known in the literature (cf. [9, 10, 12, 14, 27]). Indeed we not only avoid to use the axiom of choice, but reach constructiveness in a very strong sense. Namely, our proof of Tychonoff's theorem supplies an algorithm which, given a cover of the product space, computes a finite subcover, provided that there exists a similar algorithm for each component space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.