Abstract

In this paper we study the complete invariant metrics on Cartan-Hartogs domains which are the special types of Hua domains. Firstly, we introduce a class of new complete invariant metrics on these domains, and prove that these metrics are equivalent to the Bergman metric. Secondly, the Ricci curvatures under these new metrics are bounded from above and below by the negative constants. Thirdly, we estimate the holomorphic sectional curvatures of the new metrics, and prove that the holomorphic sectional curvatures are bounded from above and below by the negative constants. Finally, by using these new metrics and Yau's Schwarz lemma we prove that the new metrics are equivalent to the Einstein-Kahler metric. That means that the Yau's conjecture is true on Cartan-Hartogs domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.