Abstract
In this paper, we give the holomorphic sectional curvature under invariant Kähler metric on a Cartan-Hartogs domain of the third type Y III (N,q,K) and construct an invariant Kähler metric, which is complete and not less than the Bergman metric, such that its holomorphic sectional curvature is bounded above by a negative constant. Hence we obtain a comparison theorem for the Bergman and Kobayashi metrics on Y III (N,q,K).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Complex Variables, Theory and Application: An International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.