Abstract

In this paper, we give the holomorphic sectional curvature under invariant Kähler metric on a Cartan-Hartogs domain of the third type Y III (N,q,K) and construct an invariant Kähler metric, which is complete and not less than the Bergman metric, such that its holomorphic sectional curvature is bounded above by a negative constant. Hence we obtain a comparison theorem for the Bergman and Kobayashi metrics on Y III (N,q,K).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.