Abstract

In mixed linear models, it is frequently of interest to test hypotheses on the variance components. F-test and likelihood ratio test (LRT) are commonly used for such purposes. Current LRTs available in literature are based on limiting distribution theory. With the development of finite sample distribution theory, it becomes possible to derive the exact test for likelihood ratio statistic. In this paper, we consider the problem of testing null hypotheses on the variance component in a one-way balanced random effects model. We use the exact test for the likelihood ratio statistic and compare the performance of F-test and LRT. Simulations provide strong support of the equivalence between these two tests. Furthermore, we prove the equivalence between these two tests mathematically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.