Abstract
In mixed linear models, it is frequently of interest to test hypotheses on the variance components. F-test and likelihood ratio test (LRT) are commonly used for such purposes. Current LRTs available in literature are based on limiting distribution theory. With the development of finite sample distribution theory, it becomes possible to derive the exact test for likelihood ratio statistic. In this paper, we consider the problem of testing null hypotheses on the variance component in a one-way balanced random effects model. We use the exact test for the likelihood ratio statistic and compare the performance of F-test and LRT. Simulations provide strong support of the equivalence between these two tests. Furthermore, we prove the equivalence between these two tests mathematically.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have