Abstract
The mechanisms of lipoxygenase inhibition by iron chelators have been investigated in human neutrophils and in isolated soybean lipoxygenase. Their Fe(III)-containing active sites have been targeted by synthesizing novel bidentate chelators from the hydroxypyridinone family sufficiently small to gain access through the hydrophobic channels of lipoxygenase. In stimulated human neutrophils, release of [3H]arachidonate-labeled eicosanoids is dependent on the lipid solubility of hydroxypyridinones, but larger hexadentate chelators have no effect on this or on total cellular leukotriene B4 production. Lipophilic hydroxypyridinones inhibit 5-lipoxygenase at equivalent concentrations to the established inhibitor, piriprost, and show additional but minor anti-phospholipase A2 activity. Soybean 15-lipoxygenase inhibition is also dependent on the lipid solubility and coordination structure of chelators. Inhibition is associated with the formation of chelate-iron complexes, which are removed by dialysis without restoration of enzyme activity. Only after adding back iron is activity restored. Electron paramagnetic resonance studies show the removal of the iron center signal (g = 6) is concomitant with formation of Fe(III)-chelator complexes, identical in spectral shape and g value to 3:1 hydroxypyridinone Fe(III) complexes. Removal of iron is not the only mechanism by which hydroxypyridinones can inhibit lipoxygenase in intact cells, however, as a lipophilic non-iron-binding hydroxypyridinone, which shows no inhibition of the soybean lipoxygenase activity, partially inhibits 5-lipoxygenase in intact neutrophils without inhibiting neutrophil phospholipase A2.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have