Abstract

The brick-wall method put forward by 't Hooft has contributed a great deal to the understanding and calculating of the entropy of a black hole. However, there are some drawbacks in it such as little mass approximation, neglecting logarithm terms, and taking the term including L3as a contribution of the vacuum surrounding the black hole. Moreover, the fundamental problem is why the entropy of scalar field or Dirac field surrounding a black hole is the entropy of the black hole itself. It is well known that the event horizon is the characteristic of a black hole. The entropy calculation of a black hole should be only related to its horizon. Due to this analysis, we improve the brick-wall model by taking that the entropy of a black hole is only contributed by a thin film near the event horizon. This improvement not only gives us a satisfied result, but also avoids the drawbacks in the original brick-wall method. It is found that there is an intrinsic relation between the event horizon and the entropy. We also calculate the entropy of Schwarzschild–de Sitter space–time via the improved method, which can hardly be resolved via the original model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.