Abstract

In Ralstonia solanacearum, a devastating phytopathogen whose metabolism is poorly understood, we observed that the Entner-Doudoroff (ED) pathway and nonoxidative pentose phosphate pathway (non-OxPPP) bypass glycolysis and OxPPP under glucose oxidation. Evidence derived from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis supported the observations. Comparative metabolic network analysis derived from the currently available 53 annotated R. solanacearum strains, including a recently reported strain (F1C1), representing the four phylotypes, confirmed the lack of key genes coding for phosphofructokinase (pfk-1) and phosphogluconate dehydrogenase (gnd) enzymes that are relevant for glycolysis and OxPPP, respectively. R. solanacearum F1C1 cells fed with [13C]glucose (99% [1-13C]glucose or 99% [1,2-13C]glucose or 40% [13C6]glucose) followed by gas chromatography-mass spectrometry (GC-MS)-based labeling analysis of fragments from amino acids, glycerol, and ribose provided clear evidence that rather than glycolysis and the OxPPP, the ED pathway and non-OxPPP are the main routes sustaining metabolism in R. solanacearum The 13C incorporation in the mass ions of alanine (m/z 260 and m/z 232), valine (m/z 288 and m/z 260), glycine (m/z 218), serine (m/z 390 and m/z 362), histidine (m/z 440 and m/z 412), tyrosine (m/z 466 and m/z 438), phenylalanine (m/z 336 and m/z 308), glycerol (m/z 377), and ribose (m/z 160) mapped the pathways supporting the observations. The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes.IMPORTANCE Understanding the metabolic versatility of Ralstonia solanacearum is important, as it regulates the trade-off between virulence and metabolism (1, 2) in a wide range of plant hosts. Due to a lack of clear evidence until this work, several published research papers reported on the potential roles of glycolysis and the oxidative pentose phosphate pathway (OxPPP) in R. solanacearum (3, 4). This work provided evidence from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis that the Entner-Doudoroff pathway and non-OxPPP bypass glycolysis and OxPPP during the oxidation of glucose, a component of the host xylem pool that serves as a potential carbon source (5). The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. The study highlights the need to critically examine phytopathogens whose metabolism is poorly understood.

Highlights

  • In Ralstonia solanacearum, a devastating phytopathogen whose metabolism is poorly understood, we observed that the Entner-Doudoroff (ED) pathway and nonoxidative pentose phosphate pathway bypass glycolysis and OxPPP under glucose oxidation

  • It was observed that all of the selected Ralstonia spp. lacked the pfk gene that codes for an important regulatory enzyme, phosphofructokinase-1 (EC 2.7.1.11, KO0850), indicating the possible absence of glucose oxidation by the glycolytic pathway

  • It was observed that most of the Ralstonia spp. have some genes missing in the glycolysis pathway and the OxPPP, which raises curiosity about how this genus sustains its metabolism

Read more

Summary

Introduction

In Ralstonia solanacearum, a devastating phytopathogen whose metabolism is poorly understood, we observed that the Entner-Doudoroff (ED) pathway and nonoxidative pentose phosphate pathway (non-OxPPP) bypass glycolysis and OxPPP under glucose oxidation. Evidence derived from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis supported the observations. This work provided evidence from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis that the Entner-Doudoroff pathway and non-OxPPP bypass glycolysis and OxPPP during the oxidation of glucose, a component of the host xylem pool that serves as a potential carbon source [5]. Metabolic versatility of the bacterium plays a crucial role in conferring growth as well as pathogenicity in its complex life cycle This is supported by studies on the differential expression of genes in pathogenic and nonpathogenic strains of R. solanacearum wherein about 50% of the genes belong to carbohydrate and amino acid metabolism [9,10,11,12,13,14]. Annotations based on genome analysis and stable isotope labeling can map the central metabolic pathways of R. solanacearum. The experimental plan, selection of stable isotopes, and measurement of the isotope labeling in carbon atoms of the metabolites are crucial steps for pathway mapping using a 13C approach [18,19]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call