Abstract

Introduction: The utilization of combination therapy has gained attention in the medical field as it can enhance treatment efficacy while minimizing side effects. Gold nanoparticles (AuNPs) have been identified as a promising candidate for enhancing the bioeffects of ultrasound (US) waves. Objectives: The primary objective of this study was to examine the impact of US irradiation when combined with spiky and spherical AuNPs on CT26 cells. Materials and Methods: Following a tailored composition, we devised and produced AuNPs with spiky and spherical morphologies. The properties of these nanoparticles were assessed using dynamic light scattering (DLS), voltammetry, and transmission electron microscopy (TEM). The CT26 cells were treated with the two types of nanoparticles and subsequently exposed to US radiation (1 W/cm2 , 1 MHz, and 10 minutes). The cytotoxic effects of various therapeutic interventions were assessed using MTT and flow cytometry assays. Results: This study’s findings indicate that nanoparticles’ morphology played a significant role in influencing the antitumor effects of US. Specifically, it was observed that the presence of spiky nanoparticles, when subjected to US, resulted in a significantly higher rate of cell death compared to spherical nanoparticles (P<0.001). Additionally, it was observed that the temperature changes induced by the spiky nanoparticles were comparatively lower. This observation implies that nanoparticles with spiky morphology enhance the non-thermal effects of US waves. Conclusion: The outcomes demonstrate a noteworthy augmentation in the biological impacts, specifically the non-thermal effects of US waves when employed in conjunction with spiky nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call