Abstract

BackgroundA paradoxical enhancement of the magnitude of the N1 wave of the auditory event-related potential (ERP) has been described when auditory stimuli are presented at very short (<400 ms) inter-stimulus intervals (ISI). Here, we examined whether this enhancement is specific for the auditory system, or whether it also affects ERPs elicited by stimuli belonging to other sensory modalities.Methodology and Principal FindingsWe recorded ERPs elicited by auditory and somatosensory stimuli in 13 healthy subjects. For each sensory modality, 4800 stimuli were presented. Auditory stimuli consisted in brief tones presented binaurally, and somatosensory stimuli consisted in constant-current electrical pulses applied to the right median nerve. Stimuli were delivered continuously, and the ISI was varied randomly between 100 and 1000 ms. We found that the ISI had a similar effect on both auditory and somatosensory ERPs. In both sensory modalities, ISI had an opposite effect on the magnitude of the N1 and P2 waves: the magnitude of the auditory and the somatosensory N1 was significantly increased at ISI≤200 ms, while the magnitude of the auditory and the somatosensory P2 was significantly decreased at ISI≤200 ms.Conclusion and SignificanceThe observation that both the auditory and the somatosensory N1 are enhanced at short ISIs indicates that this phenomenon reflects a physiological property that is common across sensory systems, rather than, as previously suggested, unique for the auditory system. Two of the hypotheses most frequently put forward to explain this observation, namely (i) the decreased contribution of inhibitory postsynaptic potentials to the recorded scalp ERPs and (ii) the decreased contribution of ‘latent inhibition’, are discussed. Because neither of these two hypotheses can satisfactorily account for the concomitant reduction of the auditory and the somatosensory P2, we propose a third, novel hypothesis, consisting in the modulation of a single neural component contributing to both the N1 and the P2 waves.

Highlights

  • Brief sensory stimuli can elicit transient responses in the ongoing electroencephalogram (EEG) [1]

  • The observation that both the auditory and the somatosensory N1 are enhanced at short inter-stimulus intervals (ISI) indicates that this phenomenon reflects a physiological property that is common across sensory systems, rather than, as previously suggested, unique for the auditory system

  • Two of the hypotheses most frequently put forward to explain this observation, namely (i) the decreased contribution of inhibitory postsynaptic potentials to the recorded scalp event-related potential (ERP) and (ii) the decreased contribution of ‘latent inhibition’, are discussed. Because neither of these two hypotheses can satisfactorily account for the concomitant reduction of the auditory and the somatosensory P2, we propose a third, novel hypothesis, consisting in the modulation of a single neural component contributing to both the N1 and the P2 waves

Read more

Summary

Introduction

Brief sensory stimuli can elicit transient responses (event-related potentials, ERPs) in the ongoing electroencephalogram (EEG) [1]. Budd et al [19] recorded auditory ERPs elicited by a train of auditory stimuli presented using an ISI randomly varied between 100 and 1000 ms, and found that the amplitude of the auditory N1 was increased at ISIs ranging from 100 to 300 ms This phenomenon has been labelled ‘N1 enhancement’ or ‘N1 facilitation’, and has been interpreted as reflecting an increased activity of the neural generators underlying the auditory N1, due either to a change in the respective contribution of excitatory and inhibitory postsynaptic potentials [16], or to a mechanism of ‘latent inhibition’ [16,18,21,22]. We examined whether this enhancement is specific for the auditory system, or whether it affects ERPs elicited by stimuli belonging to other sensory modalities

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call