Abstract
In this study, a new shear bonding system was created that uses a CO2 laser to form a pattern of conical spots on a zirconia prosthesis surface to improve mechanical interlocking. Four types of zirconia substrates were employed, which underwent particle abrasion after being polished, machined, spotted, and spot-particle abraded. The surface roughness of each substrate was measured via scanning electron microscopy and X-ray diffraction (XRD). A shear bond strength test was performed with the zirconia-based material and a composite resin assuming abutment construction. XRD did not indicate that forming spots caused a phase transformation in zirconia with respect to machined zirconia. The shear bond strength was approximately twice that of the machined samples and approximately 2.3 times that of the samples that underwent particle and spot-particle abrasion. Surface modification by spotting improved the mechanical fitting force. However, no significant difference was observed between particle abrasion and spot-particle abrasion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.