Abstract
This journal presents the development of an innovative algorithm for Maximum Power Point Tracking (MPPT) utilizing the Enhanced Self Lift Luo Converter (ESLLC) developed through Queen Honey Bee Migration (QHBM). The QHBM used for MPPT employs a queen-based decision-making approach to determine the optimal point on solar panels. The queen continuously searches for the Maximum Power Point (MPP), and upon locating it, ceases tracking and starts building a nest. Once the nest is established, the queen resumes the search for MPP. The testing simulation evaluates computing speed, durability, and MPP's margin errors. MATLAB/Simulink is employed for verification. The simulation results demonstrate that the QHBM surpasses other algorithms like PSO, P&O, and FLC in terms of computing speed, durability, and MPP margin errors. The QHBM-based MPPT exhibits superior responsiveness to changes in irradiation and temperature compared to alternative algorithms. This proposed algorithm effectively adapts to varying environmental conditions that influence irradiation and temperature changes. Consequently, the suggested algorithm holds significant promise for practical implementation in dynamic environmental settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.