Abstract
Evolutionary and meta-heuristic algorithms are widely used to solve water resources optimization problems. In this context, the honey bee mating optimization (HBMO) algorithm, inspired by the mating ritual of honey bees, is a reliable and efficient algorithm. The HBMO algorithm is modified in this work leading to the Enhanced HBMO (EHBMO) algorithm. The EHBMO is then applied to solve several unconstrained/constrained mathematical benchmark functions and a multi-reservoir problem. The performance of the EHBMO is compared with those of the elitist genetic algorithm (EGA) and the HBMO algorithm. The results show that the EHBMO achieves a better solution in a smaller number of functional evaluations and with less variance of results about global optima in comparison with the EGA and the HBMO algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have