Abstract

CRISPR arrays and CRISPR-associated (Cas) proteins comprise a prevalent adaptive immune system in bacteria and archaea. These systems defend against exogenous parasitic mobile genetic elements. The adaption of single effector CRISPR-Cas systems has massively facilitated gene-editing due to the reprogrammable guide RNA. The guide RNA affords little priming space for conventional PCR-based nucleic acid tests without foreknowledge of the spacer sequence. Further impeding detection of gene-editor exposure, these systems are derived from human microflora and pathogens (Staphylococcus pyogenes, Streptococcus aureus, etc.) that contaminate human patient samples. The single guide RNA—formed from the CRISPR RNA (crRNA) and transactivating RNA (tracrRNA)—harbors a variable tetraloop sequence between the two RNA segments, complicating PCR assays. Identical single effector Cas proteins are used for gene-editing and naturally by bacteria. Antibodies raised against these Cas proteins are unable to distinguish CRISPR-Cas gene-editors from bacterial contaminant. To overcome the high potential for false positives, we have developed a DNA displacement assay to specifically detect gene-editors. We leveraged the single guide RNA structure as an engineered moiety for gene-editor exposure that does not cross-react with bacterial CRISPRs. Our assay has been validated for five common CRISPR systems and functions in complex sample matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call