Abstract

Energy conservation and emission reduction in China's iron and steel industry are crucial for mitigating its environmental pressures. However, uncertainties raise significant management risks when setting energy conservation and emission reduction pathways. Therefore, this paper explores the energy conservation and emission reduction potential in China's iron and steel industry. A 10,000-time Latin hypercube sampling is conducted to simulate the distribution of five types of uncertain factors. In addition, this study uses a Sobol’ sensitivity analysis method to recognize the most sensitive factor, and, in specific, analyzes the cost-effectiveness of the technologies via conservation supply curve. The results show that: (1) The uncertainty factors lead to significant fluctuate to the results. In particular, energy conservation will fluctuate by 18.24–40.77%, carbon mitigation by 28.96–55.34%, and SO2, NOx and PM mitigation effects will fluctuate by 48.32–79.53%, 22.12–51.77% and 23.92–50.03%, respectively. (2) Structure and equipment parameters are more the most sensitive to energy conservation and carbon mitigation targets, whose Sobol’ indices are beyond 0.45. End-of-pipe treatment technologies are more the most sensitive to SO2 and PM reduction targets with Sobol’ indices above 0.9. Penetration rates and equipment parameters are more the most sensitive to economic cost targets above 0.8. (3) In 2035, 33 energy conservation technologies and 34 emission reduction technologies will be cost-effective, and they can achieve 69.05–70.14% of energy conservation and 79.03–81.58% of emission reduction potentials, respectively. Based on these findings, this study proposes policy recommendations such as changing the raw material/product structure, upgrading equipment, cooperating actively, and introducing economic incentives and guidelines for technology application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call