Abstract

We consider the incompressible inhomogeneous Navier–Stokes equations with constant viscosity coefficient and density which is bounded and bounded away from zero. We show that the energy balance relation for this system holds for weak solutions if the velocity, density, and pressure belong to a range of Besov spaces of smoothness 1/3. A density-dependent version of the classical Kármán–Howarth–Monin relation is derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.