Abstract
In this paper, we mainly study the well-posedness for the 3-D inhomogeneous incompressible Navier–Stokes equations with variable viscosity. With some smallness assumption on the BMO-norm of the initial density, we first get the local well-posedness of (1.1) in the critical Besov spaces. Moreover, if the viscosity coefficient is a constant, we can extend this local solution to be a global one. Our theorem implies that we have successfully extended the integrability index p of the initial velocity which has been obtained by Abidi, Gui and Zhang in [3], Burtea in [8] and Zhai and Yin in [32] to approach the ideal one i.e. 1<p<6. The main novelty of this work is to apply the CRW theorem obtained by Coifman, Rochberg, Weiss in [11] to get a new a priori estimate for an elliptic equation with variable coefficients. The uniqueness of the solution also relies on a Lagrangian approach as in [16–18].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.