Abstract

The interaction between a wave packet of small-amplitude short internal waves, and a finite-amplitude inertial wave field is described to second order in the short-wave amplitude. The discussion is based on the principle of wave action conservation and the equations for the wave-induced Lagrangian mean flow. It is demonstrated that as the short internal waves propagate through the inertial wave field they generate a wave-induced train of trailing inertial waves. The contribution of this wave-induced mean flow to the total energy balance is described. The results obtained here complement the finding of Broutman & Young (1986) that the short internal waves undergo a net change in energy after their encounter with the inertial wave field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call