Abstract

The recent identification of nonvisual opsins has revealed an expanding family of vertebrate opsin genes. The retinal pigment epithelium (RPE) and Müller cells contain a blue and UV light-absorbing opsin, the RPE retinal G protein-coupled receptor (RGR, or RGR opsin). The spectral properties of RGR purified from bovine RPE suggest that RGR is conjugated in vivo to a retinal chromophore through a covalent Schiff base bond. In this study, the isomeric structure of the endogenous chromophore of RGR was identified by the hydroxylamine derivatization method. The retinaloximes derived from RGR in the dark consisted predominantly of the all-trans isomer. Irradiation of RGR with 470-nm monochromatic or near-UV light resulted in stereospecific isomerization of the bound all-trans-retinal to an 11-cis configuration. The stereospecificity of photoisomerization of the all-trans-retinal chromophore of RGR was lost by denaturation of the protein in SDS. Under the in vitro conditions, the photosensitivity of RGR is at least 34% that of bovine rhodopsin. These results provide evidence that RGR is bound in vivo primarily to all-trans-retinal and is capable of operating as a stereospecific photoisomerase that generates 11-cis-retinal in the pigment epithelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.