Abstract

Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that in vivo controls content and biological activity of N-arachidonoylethanolamine (AEA) and other relevant bioactive lipids termed endocannabinoids. Parallel orientation of FAAH monomers likely allows both subunits to simultaneously recruit and cleave substrates. Here, we show full inhibition of human and rat FAAH by means of enzyme inhibitors used at a homodimer:inhibitor stoichiometric ratio of 1:1, implying that occupation of only one of the two active sites of FAAH is enough to fully block catalysis. Single W445Y substitution in rat FAAH displayed the same activity as the wild-type, but failed to show full inhibition at the homodimer:inhibitor 1:1 ratio. Instead, F432A mutant exhibited reduced specific activity but was fully inhibited at the homodimer:inhibitor 1:1 ratio. Kinetic analysis of AEA hydrolysis by rat FAAH and its F432A mutant demonstrated a Hill coefficient of ~1.6, that instead was ~1.0 in the W445Y mutant. Of note, also human FAAH catalysed an allosteric hydrolysis of AEA, showing a Hill coefficient of ~1.9. Taken together, this study demonstrates an unprecedented allosterism of FAAH, and represents a case of communication between two enzyme subunits seemingly controlled by a single amino acid (W445) at the dimer interface. In the light of extensive attempts and subsequent failures over the last decade to develop effective drugs for human therapy, these findings pave the way to the rationale design of new molecules that, by acting as positive or negative heterotropic effectors of FAAH, may control more efficiently its activity.

Highlights

  • Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that in vivo controls content and biological activity of N-arachidonoylethanolamine (AEA) and other relevant bioactive lipids termed endocannabinoids

  • We show that full inhibition of enzyme activity is achieved in rFAAH, its F432A mutant and human FAAH (hFAAH), when only one of the two active sites of the enzyme is occupied by different prototypical inhibitors

  • Similar inhibitions of hFAAH were observed with the same blockers at the same homodimer:inhibitor molar ratios used for rFAAH (Tables 1 and 2)

Read more

Summary

Introduction

Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that in vivo controls content and biological activity of N-arachidonoylethanolamine (AEA) and other relevant bioactive lipids termed endocannabinoids. Endocannabinoids have been demonstrated to reduce pain and inflammation, modulate energetic homeostasis and appetite, and have anticancer, anxiolytic, and neuroprotective effects through type-1 and/or type-2 cannabinoid receptors (CB1 and CB2), as well as via stimulation of transient receptor potential vanilloid channels, peroxisome proliferator-activated receptors, and additional targets[2,3,4]. Their degradation is due to the activity of several metabolic enzymes, among which FAAH has a prominent role in vivo[5]. Each subunit contains at least two channels, one for the entry of hydrophobic substrates from the membrane side, and the other for the exit of hydrophilic products through a cytosolic gate[14,16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call