Abstract

The role of SLC3A2, a gene implicated in disulfidptosis, has not been characterized in gliomas. This study aims to clarify the prognostic value of SLC3A2 and its influence on glioma. We evaluated the expression of SLC3A2 and its prognostic importance in gliomas using publicly accessible databases and our clinical glioma samples and with reliance on Meta and Cox regression analysis approaches. Functional enrichment analyses were performed to explore SLC3A2's function. Immune infiltration was evaluated using CIBERSORT, ssGSEA, and single-cell sequencing data. Additionally, Tumor immune dysfunction and exclusion (TIDE) and epithelial-mesenchymal transition scores were determined. CCK8, colony formation, migration, and invasion assays were utilized in vitro, and an orthotopic glioma xenograft model was employed in vivo, to investigate the role of SLC3A2 in gliomas. Bioinformatics analyses indicated high SLC3A2 expression correlates with adverse clinicopathological features and poor patient prognosis. Upregulated SLC3A2 influenced the tumor microenvironment by altering immune cell infiltration, particularly of macrophages, and tumor migration and invasion. SLC3A2 expression positively correlated with immune therapy indicators, including immune checkpoints and TIDE. Elevated SLC3A2 was revealed as an independent risk element for poor glioma prognosis through Cox regression analyses. In vitro experiments showed that reduced SLC3A2 expression decreased cell proliferation, migration, and invasion. In vivo, knockdown of SLC3A2 led to a reduction in tumor volume and prolonged survival in tumor-bearing mice. Therefore, SLC3A2 is a prognostic biomarker and associated with immune infiltration in gliomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call