Abstract
The study's purpose was to assess the seizure detection performance of ENCEVIS 1.7, identify factors that may influence algorithm performance, and explore its potential for implementation and application in long-term video EEG monitoring units. The study included video-EEG recordings containing at least one epileptic seizure. Forty-three recordings, encompassing 112 seizures, were included in the analysis. True positive, false negative, and false positive seizure detections were defined. Factors that may influence algorithm performance were studied. ENCEVIS demonstrated an overall sensitivity of 71.2%, significantly higher (75.1%) in focal compared to generalized seizures (62%). Ictal patterns rhythmicity (rhythmic 59.4 %, arrhythmic 41.7 %), seizure duration (<10 sec 6.3 %, >60 sec. 63.9 % (p < 0.05)) and patient age (<18 years 39.5 %, >18 years 58.1 % (P < 0.05)) influenced ENCEVIS sensitivity. The coexistence of extracerebral signal changes did not influence sensitivity. ENCEVIS with 79.1% accuracy annotates at least one seizure in those recordings containing epileptic seizures. ENCEVIS seizure detection performance was reasonable for generalized/focal to bilateral tonic-clonic seizures and seizures with temporal lobe onset. Rhythmic ictal patterns, longer seizure duration, and adult age positively influenced algorithm performance. ENCEVIS can be a valuable tool for identifying recordings containing seizures and can potentially reduce the workload of neurophysiologists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.