Abstract

We investigated the effects of size and energy of large incident Ar cluster ions on the secondary ion emission of Si. The secondary ions were measured using a double deflection method and a time-of-flight (TOF) technique. The size of the incident Ar cluster ions was between a few hundreds and several tens of thousands of atoms, and the energy up to 60 keV. Under the incidence of keV energy atomic Ar ions, mainly atomic Si ions were detected, whereas Si cluster ions were rarely observed. On the other hand, under the incidence of large Ar cluster ions, the dominant secondary ions were Si n + (2 ⩽ n ⩽ 11). It has become clear that the yield ratio of secondary Si cluster ions was determined by the velocity of the incident cluster ions, and this strong dependence of the yield ratio on incident velocity should be related to the mechanisms of secondary ion emission under large Ar cluster ion bombardment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call