Abstract

For decades, a significant amount of research has been conducted on the vitrification of mixtures of all kinds of industrial wastes, especially fly ash, both from thermal power plants and municipal waste incinerators. Although the possibility of creating glass from all types of fly ash has been proven through such research, these studies barely focused on the emission of volatile components that takes place during vitrification processes at high temperatures. This is why, after identifying the types of volatilisation that can occur, we characterised the gasses that are emitted during the vitrification of some types of fly ash and other waste in a laboratory furnace. In order to do so, we analysed the Cl2 and SO2 gasses emitted using the DTA/TG/FTIR techniques, as well as the losses of H2O and CO2. The authors also measured the volatilizations directly from the mouth of the furnace using gas chromatography syringes and analysed the possible emission of dioxins. This study is the first analysis of volatile elements of this kind, after numerous vitrifications in recent decades which ignored the volatilisations that occur when using fly ashes. Although the various types of fly ash used generate emissions of Cl2 and SO2, their use as a by-product on an industrial level could be recommended if previous thermal and washing treatments are conducted. These would minimise the above emissions, enabling the use of said fly ash in the production of glasses for commercial frits, even if an efficient industrial-scale gas cleaning system would apply. Furthermore, an appropriate optimised design of its formulation would make it possible to structurally link some of these gaseous components to the glass structure. These types of results will make it possible to calculate the volatilization when vitrifying certain types of industrial waste on an industrial level, although these studies would require prior assessment in a pilot plant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.