Abstract

The electronic structure of the van der Waals heterostructures (HSs) of the phosphorene (P) nanoflakes (NFs) with graphene (G) and its allotropy (H1 and H2) NFs, and their complexes with Li have been studied using dispersion-corrected TPSS functional. According to the calculations, the attractive interactions in HSs come from dispersion. It has a relatively small contribution to the binding energy in Li complexes, especially for these forming complexes with G, H1, or H2 NF side. The binding energies between the individual NFs and Li atoms increase in the order G < H1 = H2 = P. The formation of HSs results in a synergetic effect for Li binding energies. This effect is the most notable for phosphorene binding sites; however, it also holds for G, H1, and H2 NFs. The formation of complexes with Li always leads to the almost complete charge transfer from Li to the NFs or HSs. In the case of HSs, the unpaired electron of Li is always located at the carbon NF side independently on the Li binding location. The activation energies of Li hopping for individual NFs are notably higher for P comparing with G, H1, or H2 NFs. The formation of HSs rises slightly the activation energies of Li hopping due to the increase of binding energies in Li-HS complexes. Graphical abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.