Abstract
The interfacial electronic structures of fullerene (C60)/zinc-phthalocyanine (ZnPc) and C60/ZnPc:C60 (50 wt %) containing a blended layer were investigated by in situ ultraviolet photoelectron spectroscopy (UPS), in an attempt to understand the role of the blended layer in improving the performance of organic photovoltaic devices that contain such layers. From the UPS spectra, the band bending found to be 0.30 eV in the ZnPc layer and 0.43 eV in the C60 layer at the C60/ZnPc interface. On the other hand, the band bending was 0.25 eV in both of the organic layers at the ZnPc:C60/ZnPc interface and no significant band bending in the C60 layer at the C60/ZnPc:C60 interface was found. The observed interface dipole was 0.06 eV at the C60/ZnPc interface and 0.26 eV at the ZnPc:C60/ZnPc interface. The offset between the highest unoccupied molecular orbital of ZnPc and the lowest occupied molecular orbital of C60 was 0.75 eV at C60/ZnPc and was 1.04 eV at the ZnPc:C60/ZnPc interface. The increased offset can be attributed to an increase in the interface dipole, caused by the blending donor and acceptor material. The blending facilitates charge transfer between the donor and acceptor, resulting in an increase in the interface dipole, resulting in a larger offset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.