Abstract
We investigate geometric structure, electronic structure and ground properties of 3C-SiC as obtained form first-principles calculations based on density functional theory with the LDA, GGA, B3LYP and HSE06 method. After comparative analysis of the total energy, band structure, density of states and the bulk modulus, we found that 3C-SiC was an indirect band gap semiconductor, the top of valence band was located at Γ point, and the bottom of conduction band was located at X point. The indirect band gap of 3C-SiC calculated by LDA, GGA, B3LYP and HSE06 was 1.34 eV, 1.44 eV, 2.88 eV and 2.26 eV, respectively. Especially for B3LYP and HSE06 methods which clearly calculated the energy splitting and the energy dispersion of both the top of valence band and the bottom of conduction band was in well agreement with the experimental data. These results will provide theoretical basis for the design and application of SiC materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.