Abstract

Abstract We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational-wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 yr−1, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of Gyr, with a 90% confidence range of . This in turn indicates an initial binary separation of , comparable to the inferred values for Galactic BNS systems. We also use new and archival Hubble Space Telescope images to measure a projected offset of the optical counterpart of 2.1 kpc (0.64r e ) from the center of NGC 4993 and to place a limit of mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of ∼200 km s−1. Future GW–EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of r-process enrichment in the universe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call