Abstract

Ni-YSZ/YSZ/GDC/LSCF6428-GDC10 solid oxide cells were fabricated and investigated in high-temperature H2O/CO2 co-electrolysis using various inlet fuel compositions at 800°C. Furthermore, to see the effect of infiltration on co-electrolysis, the precursor solution for a 10% gadolinium-doped ceria (GDC10) catalyst was dispersed into a fuel electrode backbone by a controlled urea/cation infiltration method. The influence of the inlet gas composition on the syngas product ratio was investigated by in-line gas chromatography. To understand the high-temperature H2O/CO2 co-electrolysis cell performance, electrochemical impedance spectroscopy (EIS) under open-circuit voltage and I-V characteristics, by the electrochemical reactions occurring at the electrodes of prepared solid oxide electrolysis cell (SOEC) were examined. When the inlet gas composition was N2 63.5%, H2 5%, CO2 11.5% and H2O 20% under electrolysis current density at −0.6 A cm−2, the H2/CO ratio of infiltrated cell was improved from 2.1 to 2.8 compared with the non-infiltrated cell. The thermodynamic factors determining the size, morphology and shape of the infiltrated particles were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.