Abstract

A detailed study of the electrical and defect properties of ion-implanted erbium in silicon shows that erbium doping introduces donor states. The concentration of erbium related donors as a function of implant dose saturates at 4×1016 cm−3 at a peak implanted Er-ion concentration of (4–7)×1017 cm−3. The defect levels related to erbium in silicon are characterized by deep level transient spectroscopy and identified as E(0.09), E(0.06), E(0.14), E(0.18), E(0.27), E(0.31), E(0.32), and E(0.48). The dependence of the photoluminescence on annealing temperature for float zone and for Czochralski-grown silicon show that oxygen and lattice defects can enhance the luminescence at 1.54 μm from the erbium. Temperature-dependent capacitance-voltage profiling shows donor emission steps when the Fermi level crosses EC − ET = 0.06 eV and EC − ET = 0.16 eV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call