Abstract

Within the framework of effective mass approximation, the binding energy of a hydrogenic donor impurity in zinc-blende GaN/AlxGa1−xN spherical quantum dot (QD) is investigated using the plane wave basis. The results show that the binding energy is highly dependent on impurity position, QD size, Al content and external field. The binding energy is largest when the donor impurity is located at the centre of the QD and the binding energy of impurity is degenerate for symmetrical positions with respect to the centre of QD without the external electric field. The maximum of the donor binding energy is shifted from the centre of QD and the degenerating energy levels for symmetrical positions with respect to the centre of QD are split in the presence of the external electric field. The binding energy is more sensitive to the external electric field for the larger QD and lower Al content. In addition, the Stark shift of the binding energy is also calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.