Abstract
We prove that a family of pseudo-Paley graphs of square order obtained from unions of cyclotomic classes satisfies the Erdős-Ko-Rado (EKR) module property, in a sense that the characteristic vector of each maximum clique is a linear combination of characteristic vectors of canonical cliques. This extends the EKR-module property of Paley graphs of square order and solves a problem proposed by Godsil and Meagher. Different from previous works, which heavily rely on tools from number theory, our approach is purely combinatorial in nature. The main strategy is to view these graphs as block graphs of orthogonal arrays, which is of independent interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.