Abstract

The use of the Ehrenfest method to simulate the relaxation of molecules in solution is explored. Using the cyanide ion dissolved in water as a test model, the independent trajectory (IT) and the bundle of trajectories (BT) approximations are shown to provide very different results for the time evolution of the vibrational populations of the solute. None of these approximations reproduce the Boltzmann equilibrium vibrational populations accurately. A modification of the Ehrenfest method based on the use of quantum correction factors is thus proposed to solve this problem. The simulations carried out using the modified Ehrenfest method provide IT and BT relaxation times which are closer to each other and which agree quite well with previous hybrid perturbative results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.