Abstract

Clathrin-mediated endocytosis is a multistep process which requires interaction between a number of conserved proteins. We have cloned two mammalian genes which code for a number of endocytic adaptor proteins. Two of these proteins, termed Ese1 and Ese2, contain two N-terminal EH domains, a central coiled-coil domain and five C-terminal SH3 domains. Ese1 is constitutively associated with Eps15 proteins to form a complex with at least 14 protein-protein interaction surfaces. Yeast two-hybrid assays have revealed that Ese1 EH and SH3 domains bind epsin family proteins and dynamin, respectively. Overexpression of Ese1 is sufficient to block clathrin-mediated endocytosis in cultured cells, presumably through disruption of higher order protein complexes, which are assembled on the endogenous Ese1-Eps15 scaffold. The Ese1-Eps15 scaffold therefore links dynamin, epsin and other endocytic pathway components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call