Abstract

The trade off between risks and returns gives rise to multi-criteria optimisation problems that are well understood in finance, efficient frontiers being the tool to navigate their set of optimal solutions. Motivated by the recent advances in the use of deep neural networks in the context of hedging vanilla options when markets have frictions, we introduce the Efficient Hedging Frontier (EHF) by enriching the pipeline with a filtering step that allows to trade off costs and risks. This way, a trader's risk preference is matched with an expected hedging cost on the frontier, and the corresponding hedging strategy can be computed with a deep neural network. We further develop our framework to improve the EHF and find better hedging strategies. By adding a random forest classifier to the pipeline to forecast market movements, we show how the frontier shifts towards lower costs and reduced risks, which indicates that the overall hedging performances have improved. In addition, by designing a new recurrent neural network, we also find strategies on the frontier where hedging costs are even lower.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.