Abstract

PurposeTo evaluate the ability of delayed hyperoxia to slow or prevent degenerative and gliotic changes initiated by retinal detachment. DesignAn experimental study. MethodsRhegmatogenous detachments were produced in the right eyes of eight cats. After 1 day in room air (21% O2), four cats were placed in chambers with the O2 concentration regulated at 70%; the other four were left in room air. At 7 days the retinas were harvested and examined by light and confocal microscopy. Cell specific antibodies, TUNEL and proliferation assays, outer segment length, and photoreceptor counts, were used to assess the condition of the retina. The contralateral unoperated eyes were used as controls. ResultsAnimals maintained in elevated O2 showed a dramatic preservation of rod and cone outer segments as well as in the organization of the outer plexiform layer. The number of surviving photoreceptors was increased in the hyperoxia-treated animals. Neurite sprouting, a characteristic of detached retina, was rarely observed in the experimental eyes. Proliferation of non-neuronal cells was reduced, but not halted, by hyperoxia. GFAP and vimentin expression was not effected by hyperoxia; these intermediate filament proteins increased in Müller cells similar to that observed in control detachments. ConclusionsExposure to hyperoxia, delayed by 1 day after the onset of retinal detachment, was highly effective in preserving photoreceptor cells and in reducing proliferation within the retina. It did not, however, reduce the hypertrophy of Müller glia. There were no apparent detrimental effects of exposure to 70% O2 for 6 days. These results suggest that human patients may benefit from breathing elevated oxygen levels while awaiting reattachment surgery, even if the hyperoxia is delayed relative to the time of detachment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.