Abstract

PurposeThe cellular topography of the human foveola, the central 1° diameter of the fovea, is strikingly non-uniform, with a steep increase of cone photoreceptor density and outer segment (OS) length toward its center. Here, we assessed to what extent the specific cellular organization of the foveola of an individual is reflected in visual sensitivity and if sensitivity peaks at the preferred retinal locus of fixation (PRL).MethodsIncrement sensitivity to small-spot, cone-targeted visual stimuli (1 × 1 arcmin, 543-nm light) was recorded psychophysically in four human participants at 17 locations concentric within a 0.2° diameter on and around the PRL with adaptive optics scanning laser ophthalmoscopy-based microstimulation. Sensitivity test spots were aligned with cell-resolved maps of cone density and cone OS length.ResultsPeak sensitivity was at neither the PRL nor the topographical center of the cone mosaic. Within the central 0.1° diameter, a plateau-like sensitivity profile was observed. Cone density and maximal OS length differed significantly across participants, correlating with their peak sensitivity. Based on these results, biophysical simulation allowed to develop a model of visual sensitivity in the foveola, with distance from the PRL (eccentricity), cone density, and OS length as parameters.ConclusionsSmall-spot sensitivity thresholds in healthy retinas will help to establish the range of normal foveolar function in cell-targeted vision testing. Because of the high reproducibility in replicate testing, threshold variability not explained by our model is assumed to be caused by individual cone and bipolar cell weighting at the specific target locations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.