Abstract

Backgroundβ-hydroxy-β-methylbutyric acid (HMB) is an interesting supplement in sports. However, literature sources present a limited number of studies that verify the efficacy of HMB intake over a longer time period among endurance athletes. For this reason, the aim of this study was to assess the effect of HMB supplementation on physical capacity, body composition and levels of biochemical markers in rowers.MethodsSixteen elite male rowers were administered a 12-week HMB supplementation (3×1 gHMB · day−1) and placebo administration (PLA) following the model of a randomised, placebo controlled, double-blind crossover study with a 10 days washout period. Over the course of the experiment, aerobic (maximal oxygen uptake, ventilatory threshold) and anaerobic (anaerobic power indices) capacity were determined, while analyses were conducted on body composition as well as levels of creatine kinase, lactate dehydrogenase, testosterone, cortisol and the T/C ratio. A normal distribution of variables was tested using the paired 2-tailed t-tests; the Mann–Whitney U-test or the Wilcoxon-signed rank test were applied for non-normally distributed variables.ResultsFollowing HMB supplementation, dot{mathrm{V}}{mathrm{O}}_2 max increased (+2.7 mL · min−1 · kg−1) significantly (p < 0.001) in comparison to its reduction after PLA (−1.0 mL · min−1 · kg−1). In turn, at the ventilatory threshold, a longer time was required to reach this point (+1.2 minHMB vs. −0.2 minPLA, p = 0.012), while threshold load (+0.42 W · kg−1HMB vs. −0.06 W · kg−1PLA, p = 0.002) and threshold heart rate (+9 bpmHMB vs. +1 bpmPLA, p < 0.001) increased. After HMB supplementation, fat mass decreased (−0.9 kgHMB vs. +0.8 kgPLA, p = 0.03). In relation to the initial values after HMB supplementation, the refusal time to continue in the progressive test was extended (p = 0.04), maximum load (p = 0.04) and anaerobic peak power (p = 0.02) increased. However, in relation to the placebo, no differences were observed in anaerobic adaptation or blood marker levels.ConclusionsThe results indicate that HMB intake in endurance training has an advantageous effect on the increase in aerobic capacity and the reduction of fat mass. It may also stimulate an increase in peak anaerobic power, while it seems to have no effect on other indices of anaerobic adaptation and levels of investigated markers in the blood.

Highlights

  • Background: β-hydroxy-β-methylbutyric acid (HMB) is an interesting supplement in sports

  • In view of the inconclusive character of the study results conducted to date, and the relatively low number of studies investigating the effectiveness of HMB over a longer period on endurance trained athletes, the aim of this study was to verify the effect of HMB supplementation on physical capacity, body composition and the levels of biochemical markers in elite athletes practicing rowing

  • Body composition Following the 12-week HMB supplementation, a significant decrease (p = 0.03) was recorded in fat mass (−0.9 kgHMB), while after the placebo treatment this tissue component increase (+0.8 kgPLA) (Fig. 2). In both groups, weight loss was observed, there were no differences between the HMB and placebo

Read more

Summary

Introduction

Background: β-hydroxy-β-methylbutyric acid (HMB) is an interesting supplement in sports. Literature sources present a limited number of studies that verify the efficacy of HMB intake over a longer time period among endurance athletes. For this reason, the aim of this study was to assess the effect of HMB supplementation on physical capacity, body composition and levels of biochemical markers in rowers. Methods: Sixteen elite male rowers were administered a 12-week HMB supplementation (3×1 gHMB · day−1) and placebo administration (PLA) following the model of a randomised, placebo controlled, double-blind crossover study with a 10 days washout period. In relation to the initial values after HMB supplementation, the refusal time to continue in the progressive test was extended (p = 0.04), maximum load (p = 0.04) and anaerobic peak power (p = 0.02) increased. In relation to the placebo, no differences were observed in anaerobic adaptation or blood marker levels

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call