Abstract

The aim of this study was to verify the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on physical capacity, body composition and the value of biochemical parameters in highly-trained combat sports athletes. Forty-two males highly-trained in combat sports were subjected to 12 weeks of supplementation with HMB and a placebo in a randomized, placebo controlled, double-blind crossover manner. Over the course of the experiment, aerobic and anaerobic capacity was determined, while analyses were conducted on body composition and levels of creatine kinase, lactate dehydrogenase, testosterone, cortisol and lactate. Following HMB supplementation, fat-free mass increased (p = 0.049) with a simultaneous reduction of fat mass (p = 0.016) in comparison to placebo. In turn, after HMB supplementation, the following indicators increased significantly in comparison to the placebo: the time to reach ventilatory threshold (p < 0.0001), threshold load (p = 0.017) and the threshold HR (p < 0.0001), as well as anaerobic peak power (p = 0.005), average power (p = 0.029), maximum speed (p < 0.001) and post-exercise lactate concentrations (p < 0.0001). However, when compared to the placebo, no differences were observed in blood marker levels. The results indicate that supplying HMB promotes advantageous changes in body composition and stimulates an increase in aerobic and anaerobic capacity in combat sports athletes.

Highlights

  • These beneficial effects might be connected with the anti-proteolytic effect of HMB based on the decrease of tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor-α (TNF-α), angiotensin II and interleukin-6 expression [15,23,24], and downregulation of autophagic-lysosomal and ubiquitin-proteasome system activity through normalizing Akt/FoxO axis, expression of

  • In view of the inconclusive character of the results of the studies conducted to date and of a relatively low number of studies investigating the effectiveness of HMB supplementation over a longer period on a large population of trained athletes, the aim of this study was to verify the effect of HMB supplementation on body composition, aerobic and anaerobic capacity, and on the levels of biochemical markers in highly-trained combat sports athletes

  • The coefficient of variation (CV) for the analysis of total body fat was less than 3.0% (2.1–2.9%), similar to the results reported by Erceg et al [55] and Kyle et al [54]

Read more

Summary

Introduction

A major advantage of its use suggested in the literature is connected with its anti-catabolic action, manifested in the following contexts: when an athlete needs to carry a heavy load, when muscle damage is experienced [2,4,9,10], and when there has been body mass loss, muscle mass loss, or some degree of cancerous cachexia [11,12,13] It resulted in improvement of protein metabolism and muscle work capacity in rheumatoid cachexia [14], muscular dystrophy [15], sarcopenia [10,16] or in patients who are bedridden, after injuries, suffer from lung diseases or HIV infection [17,18,19,20,21,22].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call