Abstract
Soil phosphorus (P) solubility declines sharply when a flooded soil drains, and an important component of rice (Oryza sativa) adaptation to rainfed lowland environments is the ability to absorb and utilize P under such conditions. The aim of this study was to test the hypothesis that rice cultivars differ in their P responses between water regimes because P uptake mechanisms differ. Six lowland rice cultivars (three considered tolerant of low P soils, three sensitive) were grown in a factorial experiment with three water regimes (flooded, moist and flooded-then-moist) and four soil P levels, and growth and P uptake were measured. Small volumes of soil were used to maximize inter-root competition and uptake per unit root surface. The results were compared with the predictions of a model allowing for the effects of water regime on P solubility and diffusion. The plants were P stressed but not water stressed in all the water regimes at all P levels except the higher P additions in the flooded soil. The cultivar rankings scarcely differed between the water regimes and P additions. In all the treatments, the soil P concentrations required to explain the measured uptake were several times the concentration of freely available P in the soil. The cultivar rankings were driven more by differences in growth habit than specific P uptake mechanisms, so the hypothesis cannot be corroborated with these data. Evidently all the plants could tap sparingly soluble forms of P by releasing a solubilizing agent or producing a greater root length than measured, or both. However, any cultivar differences in this were not apparent in greater net P uptake, possibly because the restricted rooting volume meant that additional P uptake could not be converted into new root growth to explore new soil volumes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have