Abstract

The well-known equation for the maximum stable drop size in a mixing vessel, dmax/L∝ (ρcn2rL3/σ)-0.6, is in good accord with the data of various investigators. It has been commonly believed that inertial force is the only external force controlling drop breakup. Although the applicable regime of this equation should be limited to the inertial subrange, the data of drop sizes correlated with the above equation do not always lie in the inertial subrange, and some of the data are in the region near the Kolmogoroff length scale. It should also be noted that viscous force acting on such a small drop cannot be ignored in comparison with inertial force, and that the maximum stable drop size is thus controlled not only by Weber number but also by Reynolds number. By introducing the Reynolds number for the drop breakup mechanism, it is explained that small drops are successfully correlated by the above equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.