Abstract

BackgroundTurbulence intensity, or hydromechanical stress, is a parameter that influences a broad range of processes in the fields of chemical engineering and biotechnology. Fermentation processes are often characterized by high agitation and aeration intensity resulting in high gas void fractions of up to 20% in large scale reactors. Very little experimental data on hydromechanical stress for such operating conditions exists because of the problems associated with measuring hydromechanical stress under aeration and intense agitation.ResultsAn indirect method to quantify hydromechanical stress for aerated operating conditions by the measurement of maximum stable drop size in a break-up controlled dispersion was applied to characterize hydromechanical stress in reactor scales of 50 L, 3 m3 and 40 m3 volume with a broad range of operating conditions and impeller geometries (Rushton turbines). Results for impellers within each scale for the ratio of maximum to specific energy dissipation rate ϕ based on measured values of maximum stable drop size for aerated operating conditions are qualitatively in agreement with results from literature correlations for unaerated operating conditions. Comparison of data in the different scales shows that there is a scale effect that results in higher values for ϕ in larger reactors. This behavior is not covered by the classic theory of turbulent drop dispersion but is in good agreement with the theory of turbulence intermittency. The data for all impeller configurations and all aeration rates for the three scales can be correlated within ±20% when calculated values for ϕ based on the measured values for dmax are used to calculate the maximum local energy dissipation rate. A correlation of the data for all scales and all impeller configurations in the form ϕ = 2.3∙(ϕunaerated)0.34∙(DR)0.543 is suggested that successfully models the influence of scale and impeller geometry on ϕ for aerated operating conditions.ConclusionsThe results show that besides the impeller geometry, also aeration and scale strongly influence hydromechanical stress. Incorporating these effects is beneficial for a successful scale up or scale down of this parameter. This can be done by applying the suggested correlation or by measuring hydromechanical stress with the experimental method used in this study.

Highlights

  • Turbulence intensity, or hydromechanical stress, is a parameter that influences a broad range of processes in the fields of chemical engineering and biotechnology

  • The method is based on the theory of turbulent drop dispersion and uses the well established correlation of the maximum stable drop size dmax with maximum local energy dissipation rate εmax for break-up controlled dispersions: In an agitated tank, kinetic energy is introduced to the liquid by the action of the impeller

  • This is in accordance with the classic theory of break-up controlled drop dispersion if the ratio of maximum to volume averaged energy dissipation rate φ is independent of the operating conditions

Read more

Summary

Results

An indirect method to quantify hydromechanical stress for aerated operating conditions by the measurement of maximum stable drop size in a break-up controlled dispersion was applied to characterize hydromechanical stress in reactor scales of 50 L, 3 m3 and 40 m3 volume with a broad range of operating conditions and impeller geometries (Rushton turbines). Results for impellers within each scale for the ratio of maximum to specific energy dissipation rate φ based on measured values of maximum stable drop size for aerated operating conditions are qualitatively in agreement with results from literature correlations for unaerated operating conditions. Comparison of data in the different scales shows that there is a scale effect that results in higher values for φ in larger reactors. This behavior is not covered by the classic theory of turbulent drop dispersion but is in good agreement with the theory of turbulence intermittency.

Conclusions
Background
Results and discussion
Materials and methods
Hinze JO
14. Einsele A
40. Humphrey A
51. Bourne JR
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.