Abstract

The thermal degradation of polycarbonate/triphenylphosphate (PC/TPP) and PC/resocinolbis(diphenylphosphate) (PC/RDP) in air has been studied using TGA/FTIR and GC/MS. In PC/phosphate blends, the phosphate stabilizes the carbonate group of polycarbonate from alcoholysis between the alcohol products of polycarbonate degradation and the carbonate linkage. Thus, the evolution of bisphenol A, which is mainly produced via hydrolysis/alcoholysis of the carbonate linkage, is significantly reduced, while, the evolution of various alkylphenols and diarylcarbonates increases. The bonds that are broken first in the thermal degradation of both the carbonate and isopropylidene linkages of polycarbonate are the weakest bonds in each, when a phosphate is present. Triphenylphosphate and resocinolbis(diphenyl-phosphate), even though they exhibit a significant difference in their volatilization temperature, appear to play a similar role in the degradation pathway of polycarbonate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.