Abstract

Sound stimuli are converted into electrical signals via gating of mechano-electrical transducer (MT) channels in the hair cell stereociliary bundle. The molecular composition of the MT channel is still not fully established, although transmembrane channel-like protein isoform 1 (TMC1) may be one component. We found that in outer hair cells of Beethoven mice containing a M412K point mutation in TMC1, MT channels had a similar unitary conductance to that of wild-type channels but a reduced selectivity for Ca(2+). The Ca(2+)-dependent adaptation that adjusts the operating range of the channel was also impaired in Beethoven mutants, with reduced shifts in the relationship between MT current and hair bundle displacement for adapting steps or after lowering extracellular Ca(2+); these effects may be attributed to the channel's reduced Ca(2+) permeability. Moreover, the density of stereociliary CaATPase pumps for Ca(2+) extrusion was decreased in the mutant. The results suggest that a major component of channel adaptation is regulated by changes in intracellular Ca(2+). Consistent with this idea, the adaptive shift in the current-displacement relationship when hair bundles were bathed in endolymph-like Ca(2+) saline was usually abolished by raising the intracellular Ca(2+) concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call