Abstract

To observe the neutron transmutation and displacement damage effects, Au/n-Si/Ag Schottky barrier diodes were exposed to thermal neutron irradiation. Irradiation induced changes in Schottky barrier height, saturation current, and donor concentration were investigated by using current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the diodes. The irradiation for 10 s caused a little change in the Schottky diode parameters which were obtained from I-V and C-V measurements. Observable changes in the parameters occurred after the second irradiation of 30 s duration. After the total dose, an increase in saturation current and barrier height inhomogeneties took into place and a decrease in carrier concentration was observed due to the carrier removal effect of thermal neutron-induced damages. Whereas the values of zero bias barrier height have little change after irradiations, the values of ideality factor increased after irradiations. The values of zero-bias barrier height for all diodes was also calculated from reverse bias current characteristics. After second dose, the values of zero-bias barrier height decreased for all diodes. The values of series resistance were determined by Cheung functions before and after irradiations. Before irradiations, the values were found between 2.10 kΩ and 2.76 kΩ. After second dose, the values of series resistance of all diodes decreased and were found between 1.59 kΩ and 2.20 kΩ. Furthermore, the proof of thermal neutron transmutation of elements in the devices was given via energy dispersive spectroscopy (EDS) mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call